Testing Consumer Rationality Using Perfect Graphs and Oriented Discs
نویسندگان
چکیده
Given a consumer data-set, the axioms of revealed preference proffer a binary test for rational behaviour. A natural (non-binary) measure of the degree of rationality exhibited by the consumer is the minimum number of data points whose removal induces a rationalisable data-set. We study the computational complexity of the resultant consumer rationality problem in this paper. We explain how to formulate this problem in terms of a directed revealed preference graph and show, for markets with a large number of commodities, that it is equivalent (in terms of approximation) to the directed feedback vertex set problem. Our main result is to obtain an exact threshold on the number of commodities that separates easy cases and hard cases. Specifically, for two-commodity markets the consumer rationality problem is polynomial time solvable; we prove this via a reduction to the vertex cover problem on perfect graphs. For three-commodity markets, however, the problem is NP-complete; we prove this using a reduction from planar 3-sat that is based upon oriented-disc drawings.
منابع مشابه
On the oriented perfect path double cover conjecture
An oriented perfect path double cover (OPPDC) of a graph $G$ is a collection of directed paths in the symmetric orientation $G_s$ of $G$ such that each arc of $G_s$ lies in exactly one of the paths and each vertex of $G$ appears just once as a beginning and just once as an end of a path. Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete Math. 276 (2004) 287-294) conjectured that ...
متن کاملAre Consumers Rational? Experimental Evidence?
D some misconceptions, consumer rationality is a property of the researcher rather than the consumer. Consumers become more rational as we are better able to predict their behavior or other important outcomes influenced by their behavior. Perfect rationality results when we achieve accurate predictions. Consequently, at least for many Marketing Science articles, consumers are becoming more rati...
متن کاملPerfect $2$-colorings of the Platonic graphs
In this paper, we enumerate the parameter matrices of all perfect $2$-colorings of the Platonic graphs consisting of the tetrahedral graph, the cubical graph, the octahedral graph, the dodecahedral graph, and the icosahedral graph.
متن کاملPerfect Matchings in Edge-Transitive Graphs
We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...
متن کامل$n$-Array Jacobson graphs
We generalize the notion of Jacobson graphs into $n$-array columns called $n$-array Jacobson graphs and determine their connectivities and diameters. Also, we will study forbidden structures of these graphs and determine when an $n$-array Jacobson graph is planar, outer planar, projective, perfect or domination perfect.
متن کامل